Global geological map of Venus
نویسندگان
چکیده
The surface area of Venus ( 460 10 km) is 90% of that of the Earth. Using Magellan radar image and altimetry data, supplemented by Venera-15/16 radar images, we compiled a global geologic map of Venus at a scale of 1:10 M. We outline the history of geological mapping of the Earth and planets to illustrate the importance of utilizing the dual stratigraphic classification approach to geological mapping. Using this established approach, we identify 13 distinctive units on the surface of Venus and a series of structures and related features. We present the history and evolution of the definition and characterization of these units, explore and assess alternate methods and approaches that have been suggested, and trace the sequence of mapping from small areas to regional and global scales. We outline the specific defining nature and characteristics of these units, map their distribution, and assess their stratigraphic relationships. On the basis of these data, we then compare local and regional stratigraphic columns and compile a global stratigraphic column, defining rock-stratigraphic units, time-stratigraphic units, and geological time units. We use superposed craters, stratigraphic relationships and impact crater parabola degradation to assess the geologic time represented by the global stratigraphic column. Using the characteristics of these units, we interpret the geological processes that were responsible for their formation. On the basis of unit superposition and stratigraphic relationships, we interpret the sequence of events and processes recorded in the global stratigraphic column. The earliest part of the history of Venus (Pre-Fortunian) predates the observed surface geological features and units, although remnants may exist in the form of deformed rocks and minerals. We find that the observable geological history of Venus can be subdivided into three distinctive phases. The earlier phase (Fortunian Period, its lower stratigraphic boundary cannot be determined with the available data sets) involved intense deformation and building of regions of thicker crust (tessera). This was followed by the Guineverian Period. Distributed deformed plains, mountain belts, and regional interconnected groove belts characterize the first part and the vast majority of coronae began to form during this time. The second part of the Guineverian Period involved global emplacement of vast and mildly deformed plains of volcanic origin. A period of global wrinkle ridge formation largely followed the emplacement of these plains. The third phase (Atlian Period) involved the formation of prominent rift zones and fields of lava flows unmodified by wrinkle ridges that are often associated with large shield volcanoes and, in places, with earlier-formed coronae. Atlian volcanism may continue to the present. About 70% of the exposed surface of Venus was resurfaced during the Guineverian Period and only about 16% during the Atlian Period. Estimates of model absolute ages suggest that the Atlian Period was about twice as long as the Guineverian and, thus, characterized by significantly reduced rates of volcanism and tectonism. The three major phases of activity documented in the global stratigraphy and geological map, and their interpreted temporal relations, provide a basis for assessing the geodynamical processes operating earlier in Venus history that led to the preserved record. & 2011 Elsevier Ltd. All rights reserved.
منابع مشابه
The resurfacing history of Venus: Constraints from buffered crater densities
Because of atmospheric shielding and endogenic resurfacing, the population of impact craters on Venus is small (about a thousand) and consists of large craters. This population has been used in numerous studies with the goal of deciphering the geologic and geodynamic history of Venus, but the nearly spatially random nature of the crater population has complicated efforts to understand this hist...
متن کاملGeological Evidence for Petrogenetic Diversity on Venus: Implications for Future Exploration Strategies
Introduction: A long-standing, fundamental question in planetary geoscience is: "How similar are the geological histories of Earth and Venus, and when and how did their evolution diverge?" Did Venus once have oceans and a more Earth-like climate, as suggested by Pioneer-Venus data [1]? If so, when, how, and why did it transition to current conditions, and are traces of this early period, and th...
متن کاملThe history of volcanism on Venus
Completion of a global geological map of Venus has provided documentation of the relative age relationships, spatial distribution, and topographic configuration of the major geologic units and permitted us to address several important problems concerning the volcanic history of Venus. We use these data to: 1) assess the stratigraphic position of volcanic units and landforms, 2) determine their ...
متن کاملThe Geological History of Venus: Constraints from Buffered Crater Densities
Introduction: The density of impact craters is widely used in planetary science to study relative and absolute surface ages and the nature of resurfacing on planets. On Venus, the applicability of such methods is very limited due to the small total number of impact craters (about a thousand) [1-3], which is caused both by shielding with a thick atmosphere and active volcanic/tectonic resurfacin...
متن کاملSurface Characteristics of Venus Derived From Pioneer Venus Altimetry, Roughness, and Reflectivity Measurements
The three primary data sets for the Pioneer Venus orbiter radar experiment (topography, roughness, and reflectivity) contain important information about the geological and textural characteristics of the surface of Venus. We have subdivided the range of roughness and reflectivity values into three categories as follows: roughness, in degrees rms slope: relatively smooth (1ø-2.5ø), transitional ...
متن کامل